Introduction to workshop
Since the 1980s, deep learning and biomedical engineering have been coevolving and feeding each other. The breadth, complexity, and rapidly expanding size of biomedical data have stimulated the development of novel deep learning methods, and application of these methods to biomedical data have led to scientific discoveries and practical solutions. Nowadays, neural network (NN), convolutional neural network (CNN), recurrent neural network (RNN), long short-term memory (LSTM) networks have been widely applied in various biomedical applications, such as disease detection and prevention, cancer detection and prevention, disease prediction, experimental medicine, emergency, medication management, healthcare management. Particularly, due to the ability to exploit hierarchical feature representations learned solely from data, instead of features designed by hand according to domain-specific knowledge, deep learning is rapidly becoming the state of the art, leading to enhanced performance in the biomedical image analysis domain, such as image segmentation, image registration, image fusion, image annotation, computer-aided diagnosis (CADx) and prognosis, lesion/landmark detection (34–36), and microscopic image analysis. It is essential to acknowledge a strong two-way relationship between deep learning and bioinformatics and biomedicine. In one direction, deep learning helps the bioinformatics and biomedicine, both broadly, by providing powerful methods for analyzing biomedical data, and more narrowly, by providing simplified but useful computational models for neuroscience. In the other direction, it is our knowledge of the human brain that has provided the fundamental source of inspiration for AI and deep learning, while all areas of bioinformatics and biomedicine have provided challenging problems that have inspired researchers to push the boundaries of deep learning methods.
Deep learning techniques have achieved state-of-the-art performance across different biomedical applications; however, there is still room for improvement. First, as witnessed in computer vision, in which breakthrough improvements were achieved by use of large numbers of training data, a large, publicly available data set of medical images from which deep models can find more generalized features would lead to improved performance. Second, although data-driven feature representations, especially in an unsupervised manner, have helped enhance accuracy, it would be desirable to devise a new methodological architecture involving domain-specific knowledge. Third, it is necessary to develop algorithmic techniques to efficiently handle biomedical data acquired with different scanning protocols so that it would not be necessary to train modality-specific deep models. Finally, when using deep learning to investigate underlying patterns, because of the black box–like characteristics of deep models, it remains challenging to understand and interpret the learned models intuitively. To face these challenges, this workshop named “Deep Learning Techniques for Bioinformatics and Biomedicine” in conjunction with the 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2022) will solicit papers on various deep learning techniques for bioinformatics and biomedicine.
Research topics included in the workshop
- Deep learning for disease detection and prevention
- Deep learning for cancer detection and prevention
- Deep learning for disease prediction
- Deep learning for experimental medicine
- Deep learning for emergency
- Deep learning for medication management
- Deep learning for healthcare management
- Bioinformatics and biomedicine applications based on deep learning
- Bioinformatics and biomedicine applications based on reinforcement learning
- Bioinformatics and biomedicine applications based on federated learning
- Bioinformatics and biomedicine applications based on federated learning
Important dates
Due date for full workshop papers submission: Oct 10, 2022
Notification of paper acceptance to authors: Nov 5, 2022
Camera-ready of accepted papers: Nov. 21, 2022
Workshops: Dec 6-9, 2022